If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2m^2+4m-3=0
a = 2; b = 4; c = -3;
Δ = b2-4ac
Δ = 42-4·2·(-3)
Δ = 40
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{40}=\sqrt{4*10}=\sqrt{4}*\sqrt{10}=2\sqrt{10}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{10}}{2*2}=\frac{-4-2\sqrt{10}}{4} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{10}}{2*2}=\frac{-4+2\sqrt{10}}{4} $
| 4(5x+8)=-88 | | V+8=-16+4v | | -a+5+7a-14=27 | | -9x-42=-3(x+8) | | -3(y-7)=4y+7 | | P-4=-8+2p | | 2g+2+g+g=14 | | 10x+40=2x-4+180 | | -9u+47=-7(u-7) | | 10r=9r-8 | | 2u+3(u+5)=-15 | | 3/4(8x+24)=3x | | (x^2)-2x-65=0 | | 3(u-2)-3=-3(-8u+6)-6u | | 8+3z=2z | | 5(y-2)-8y=5 | | 854=14x | | -5u=-6u+9 | | 2/x-1=-3 | | -20=-(4x-6x) | | -16=6(v+4)+2v | | 4y+2=2y+4=10y-14 | | 4372=12^n-4/2 | | -3n+6=-4n | | 3x-13/4=-6 | | 14x-79=0 | | -2x+5+4x-3=-30+8x+2 | | 238=14m | | .22x+17.30=25 | | 2x×2x+10x=39 | | 5^(x)=0.2 | | 22x-17.30=25 |